Quantifying the magnitude of hazardous incidents among laboratory staff in Kenya: Preliminary results of a national health care workers survey, 2014-2015

Noel Odhiambo 18th -20th November 2015 Enashipai Hotel Naivasha , Kenya.

Background

- Clinical laboratories in health care facilities receive clinical specimens with requests ;
 - infectious nature of clinical material is unknown
 - a broad request for microbiological examination for multiple agents is usually made (e.g., sputa submitted for "routine," acid-fast, and fungal cultures).
 - US Department of Health and Human services CDC, NIH, 2009, Biosafety in microbiological and biomediacl laboratories 5th edition

Background

- Laboratory staff therefore exposed to risks in the course of handling infectious materials
- Bio-safety training programs should take into account the needs assessment of the learners
 - includes assessment of the safety climate at health facilities and prevalence of occupational injuries (WHO manual, 2004)

Objective

 To quantify the magnitude of hazardous incidents among laboratory staff in Kenya

Methods

- As part of the Kenya's premier national public health laboratory's training on bio-safety and biosecurity between August 2014 and March 2015, a survey on occupational hazards and the safety climate in laboratories in Kenya was conducted among laboratory staff
 - Descriptive statistics was used to summarize types of hazardous incidents experienced by laboratory personnel
 - Logistic regression was used to describe factors associated with reporting hazardous injury

Characteristics of laboratory staff who took part in the survey

- 294 laboratory personnel participated
 - Excluded from the analysis
 - 10 from Research laboratories
 - 2 from Reference laboratories
- 282 included in final analysis
 - 204 (72%) from government-owned health facilities
 - 145 (51%) had worked at the same facility for 4+ years
 - 142 (50%) Vaccinated against Hepatitis B virus
 - 48 (17%) ever trained on biosafety & biosecurity
 - 68 (24%) had an incident reporting mechanism present

Prevalence of Occupational hazards

6% falls

41% Sharps injuries

Ever experienced a hazard 238/282 (84%)

33% Hazardous spills

17% Hazardous gases inhalation

18% Subcutaneou s chemical exposure

Conditions under which incidents occurred

47% Lab procedure

29% Spillage

14% Waste handling11% Contaminated work surfaces

9% Lifting heavy object5% equipment maintenance

5% Use of devices

3% Inappropriate dressing

Personal Protective Equipment donned at time of injury 5 (2%) face shield

6 (2%) Other PPE 3 cotton surgical gown 1 mask 1 shoes covers 1 closed shoes) 3 (1%) goggles/safety spectacles

Reporting of incidents

- Only 132/238 (55%) injuries reported
 - 11/14 (76%) of falls
 - 69/98 (70%) of sharp injuries
 - 44/79 (56%) of hazardous spills
 - 22/43 (51%) of subcutaneous chemical exposures
 - 19/41 (46%) of inhalation of harmful gases
 - 3/7 (43%) of ingestion of hazardous agents

Reporting of incidents

Participant characteristics		Reported an injury/Total 132/282 (47%) n/N(%)	Crude Odds ratio (95% CI)	P value
Ever been trained	Yes	30/50 (60)	1.8 (0.9-3.3)	0.06
	No	105/232 (45)	Ref	
Vaccinated against HepB	Yes	79/164 (49)	0.9 (0.6-1.6)	0.91
	No	57/116 (49)	Ref	
Presence of reporting mechanism	Yes	47/75 (63)	2.1 (1.2-3.5)	0.007
	No	89/205 (43)	Ref	
Work duration in facility	<4 years	56/110 (51)	1.2 (0.7-1.9)	0.57
	4+ years	80/170 (47)	Ref	
Facility type	Governme nt owned	119/256 (46)	0.5 (0.2-1.2)	0.17
	Other	15/22 (68)	Ref	

Intervention Instituted upon reporting a hazardous incident

- Remedial action instituted for 110/132 (83%) of reported incidents
 - 3/3 (100%) of ingestion of hazardous agents
 - 64/69 (93%) of sharp injuries
 - 18/22 (82%) of subcutaneous chemical exposures
 - 35/44 (80%) of hazardous spills
 - 14/19 (74%) of inhalation of harmful gases
 - 8/11 (73%) of falls

Limitations

 Incidents surveyed were by self report and were not verified by review of facility incidentreporting logs

Conclusion

- High incidence of injuries maybe attributed to low rates of PPE use at the time of incidents⁴
- Rates of reporting of incidents was higher in the laboratory than has been observed among other cadres ⁵
 - Maybe attributed to the safety climates at these institutions ^{6.}

Recommendations

- Institute training on bio-safety and bio-security for laboratory staff⁷
- Site assessments to
 - Verify the safety climate where laboratory staff were drawn from
 - propose infrastructural changes and equipment to improve the safety climate in laboratories
- Implement an efficient, multifaceted legislation covering all aspects of occupational exposure
 - E.g. an integrated information and incident management system to routinely document occupational hazards⁸

References

¹US Department of Health and Human services CDC, NIH, 2009, Biosafety in microbiological and biomediacl laboratories 5th edition

- ² Ministry of Health (nd) Laboratory Biosafety and Biosecurity policy Guideline, Nairobi, Kenya; NPHLs
- ³ World Health Organization (2004) Laboratory biosafety manual. 3rd ed, Geneva, WHO
- ⁴ Mbaisi ME, Ng'ang'a Z, Wanzala P, Omolo J. Prevalence and factors associated with percutaneuos injuries and splash exposures among health care workers in a provincial hospital, Kenya, 2010. The Pan African Medical Journal. 2013;14(10).
- ⁵ Kaczan E Gottlieb I Jans H 1994 Occupational injuries with risk of transmission of blood-borne pathogens. A study of a 2-year material from the Holstebro Central Hospital 25;156(30):4360-4.
- ⁶ Higgins, JJ, Weaver, P,J, Fitch P, Johnson, B, Pearl, RM, 2013 Implementation of a Personnel Reliability Program as a Facilitator of Biosafety and Biosecurity Culture in BSL-3 and BSL-4 Laboratories Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science Volume 11, Number 2
- ⁷<u>Riddell LA</u>, <u>Sherrard J</u>. 2000 Blood-borne virus infection: the occupational risks. <u>Int J STD</u> <u>AIDS</u>. 2000 Oct;11(10):632-9.

⁸Ganczak M 2006, HIV infection under laboratory conditions , <u>Med Pr.</u> 57(4):353-

Acknowledgement

- Co-authors
- CDC Kenya
- MOH Kenya
- KEMRI/CDC
- National Biosafety office
- Other implementing partners i.e. MSH