ANTIMICROBIAL STEWARDSHIP IN KNH: LESSONS LEARNT

Antimicrobial stewardship

- Antimicrobial stewardship programs in hospitals seek to optimize antimicrobial prescribing in order to
 - improve individual patient care
 - reduce hospital costs
 - slow the spread of antimicrobial resistance
- Overarching role is to change and direct antimicrobial use at a health care institution

Antimicrobial Stewarship

- Define what the institution considers appropriate antimicrobial use
 - Physicians acquire their antimicrobial prescribing habits from
 - colleagues,
 - recommendations of antibiotic handbooks,
 - information provided by medical representatives
 - Risk of contributing to antimicrobial resistance was rated lowest among seven factors that influence a physician's choice of antimicrobial agent

Clin Microbiol Rev. 2005 October; 18(4): 638-656

AMS Programs and Strategies

- Education and Guideline Implementation Strategies
- □ Formulary and Restriction Strategies
- Review and Feedback Strategies
- □ Antibiotic Cycling Strategies
- Computer-Assisted Strategies

Attributes of an AMS program

- Leadership
- Scope
- Ownership
- Location
- Tools
- Implementers
- Review and feedback

Leadership: AMS STRUCTURE

Medical Advisory Committee

Medicine & Therapeutics Committee

IPC

Formulary subcommittee

M& E subcommittee

Antimicrobial Stewardship subcommittee Policies and protocols ADHOC committees

Leadership: AMS

PHYSICIAN CHAMPIONS

PHARMACY

INFECTION PREVENTION AND CONTROL

MICROBIOLOGY

NURSING

DOCTORS FROM DIFFERENT DISCIPLINES

Terms of Reference

- To collate input from Clinical departments and develop antimicrobial protocols
- Monitor, report and disseminate antimicrobial susceptibility patterns in the hospital.
- To give regular updates to the KNH Medicines and Therapeutics Committee

Meetings

- Monthly: Last Friday of each month
- □ Agenda:
 - Set out by secretariat
 - Meet regularly
- Report
 - Included in each MTC meeting

Review and Feedback

- Involves retrospective review of antimicrobial orders
 - if an order appears to be inappropriate, a member of the antimicrobial management team contacts the prescriber in an effort to optimize therapy
 - Involves reviews by
 - Clinical Pharmacist
 - Infectious Disease specialist

Outputs

THE KNH GUIDE TO ANTIMICROBIAL THERAPY IN CRITICAL CARE UNITS

First Edition 2014

This guideline has been developed by a multidisciplinary team comprising medical specialists, microbiologists, clinical pharmacists, infection prevention and control specialists and the medicine and therapeutics committee.

The hospital antibiogram has been used to identify the most common pathogens and profile their antimicrobial susceptibility patterns. Application of this guide will enhance appropriate antimicrobial selection and high standard of patient care in Critical Care Unit.

The guide does not apply to all patients uniformly. The choice of antimicrobials may be modified in special groups such as pregnant and lactating mothers, renal and hepatic dysfunction, recent antimicrobial therapy, history of hypersensitivity and the presence of significant drug interactions.

The changes in the local antibiogram and new recommendations on antibiotic use will inform the periodic revision of this guide.

It is our intention that this guide provides a prototype upon which other antimicrobial protocols will be developed.

Good practice on antimicrobial use	10
Antibiotic prescribing algorithm (knh)	11
General principles of ccu antibiotic use in knh	11
Table 1: infection prevention measures for invasive procedures	12
Patient risk stratification	13
How to use this guide	13
Table 2: bloodstream infections antibiotic protocol	14
Table 3: pneumonia antibiotic protocol	16
Table 4: urinary tract infections antibiotic protocol	18
Table 5: skin and soft tissue antibiotic protocol	19
Table 6 : intra-abdominal infections antibiotic protocol	20
Table 7 : category four	22
Table 8 : standard dosages of commonly used antimicrobial	23

Good practice on antimicrobial use

- Ensure that appropriate dose is prescribed; if uncertain consult the clinical pharmacist or check in the hospital formulary.
- The need for antimicrobial therapy should be reviewed regularly.
- For most infections 5 to 7 days of antimicrobial therapy is sufficient.
- Once culture reports are available, the physician shall step down to the narrowest spectrum, most efficacious and most cost effective option. If there is no step down availed, the reason shall be documented for clinical audit.

Good practice on antimicrobial use

- Appropriate investigations are recommended for all infections. These are necessary for diagnosis, treatment and follow up.
- Microbiological samples should be collected before initiating antimicrobial therapy.
- The hospital formulary is to be used while choosing antimicrobial therapy.
- Check for factors that will affect drug choice and dose such as renal and hepatic dysfunction, drug interactions and hypersensitivity reactions.

Patient risk stratification

Category One

No contact with healthcare system in the last 90 days, no prior antibiotic treatment in the last 90 days, patient young with no comorbidities and no organ failure.

Category Two

Patient with recent hospital admission without invasive procedure, recent exposure to antibiotic, ward transfers, other hospital transfer in, patient old with co-morbidities and/or one organ failure.

Category Three Patient who has long hospitalization with invasive procedure, recent and multiple antibiotic therapies, advanced HIV/AIDs, Neutropenia, other severe immune-suppression and more than one organ failure.

Category Four

Patient unresponsive to antibacterial agents consider adding a systemic antifungal agent (See table 7)

Bloodstream infections

	Category 1	Category 2	Category 3
	No contact with health care system	Recent hospital admission,	Long hospitalization
Patient risk stratification	No prior antibiotic treatment	dialysis etc. without invasive procedure	With Invasive procedures
	Patient young with no co- morbidities	Recent antibiotic therapy	Recent and multiple antibiotic therapies
	No organ failure	Patient old with co-morbidities	Advanced
		Single organ failure	immunodeficiency
			Neutropenia,
			Multiple organ failure
Common	Staphylococcus aureus, Coagulase-	Escherichia coli, Klebsiella,	Acinetobacter*,
Pathogens	negative staphylococcus, Escherichia	Enterobacter, Citrobacter	Pseusomonas, Escherichia
	coli		coli, Klebsiella, Enterobacter,
			Citrobacter
Empiric	Coamoxiclav	Ertapenem	Full spectrum Carbepenem
Therapy	+/-	or	(Imipenem or Meropenem) + Amikacin
	Aminoglycoside	 Ciprofloxacin 	or
			Piperacillin/Tazobactam + Amikacin **

Bloodstream infections

After culture and susceptibility testing							
Pathogen	Recommended	Alternative	Remarks				
Staph. aureus	Flucoxacillin	Coamoxiclav					
MSSA							
Staph. aureus	Vancomycin or	• Linezolid					
MRSA	Teicoplanin						
Coagulase negative	Flucloxacillin	Coamoxiclav	Mostly a skin contaminant.				
Staphylococci							
Enterococcus	Vancomycin or	• Linezolid					
	Teicoplanin						
Escherichia coli, Klebsiella,	Ciprofloxacin	• Ertapenem	For ESBLs use Ertapenem				
Citrobacter and other							
Enterobacteriaceae							
Pseudomonas	Ceftazidime	Piperacilllin/Tazobactam +	Ciprofloxacin may be used in place				
	+	Aminoglycoside or	of Aminoglycosides in patients				
	Aminoglycoside	• Cefepime +	with renal dysfunction .				
		Aminoglycoside					
Acinetobacter • Piperacillin/Tazobactam or Ce		or Cefepime or Imipenem or	For MDR Acinetobacter use				
	Meropenem +		Colistin or Tigecycline				
	• Amikacin						

Challenges

- What influences acceptability of guidelines
 - Ownership: the degree of local input in development
 - Compliance with national guidelines is poor
 - Adaptation of national guidelines to local circumstances
 - broad dissemination of guidelines in easily accessible forms (print and/or electronic),
 - active educational methods

Challenges

- Complexity of KNH systems:
 - Prescribers
 - Levels
 - As a teaching site
 - Patient stratification
 - Medicines
- Dissemination

Implementers

- Embrace antibiotic stewardship
- Improve antibiotic use
 - improve individual patient outcomes,
 - reduce the overall burden of antibiotic resistance,
 - save healthcare costs.
- Make appropriate antibiotic use a quality improvement and patient safety priority.
- Focus on reducing unnecessary antibiotic use

Implementation

- Collaborate with each other and with patients
- Talk to your patients about appropriate use of antibiotics.
- Work with pharmacists to counsel patients on appropriate antibiotic use, antibiotic resistance, and adverse effects.

Acknowledgments

- KNH Medicines and Therapeutics committee
 - AMS subcommittee
- Editorial team
 - □ Co-authors: Dr. E. Omonge, Dr. E. Kamuri