



# Clinical cases: Gastrointestinal infections

#### Prof. Pierre Tattevin

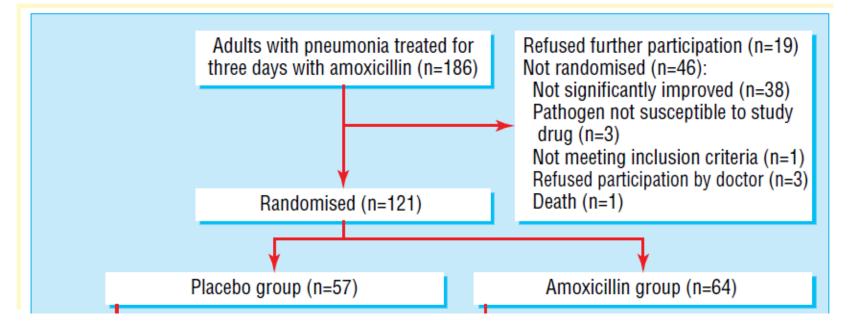
Infectious Diseases & ICU / Antimicrobial Stewardship Committee Pontchaillou University Hospital, Rennes, France



'We need evidence on the best way to use (or not) antibiotics, to convince prescribers, and impact on their practices'

Effectiveness of discontinuing antibiotic treatment after three days versus eight days in mild to moderate-severe community acquired pneumonia: randomised, double blind study

Rachida el Moussaoui, Corianne A J M de Borgie, Peterhans van den Broek, Willem N Hustinx, Paul Bresser, Guido E L van den Berk, Jan-Werner Poley, Bob van den Berg, Frans H Krouwels, Marc J M Bonten, Carla Weenink, Patrick M M Bossuyt, Peter Speelman, Brent C Opmeer, Jan M Prins

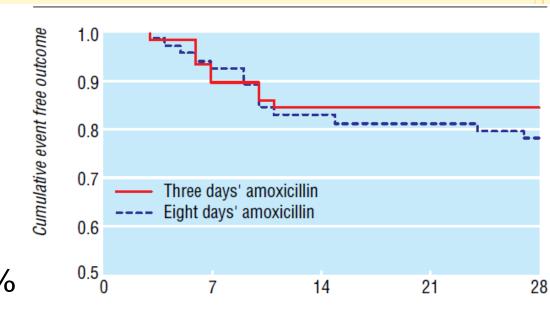

#### **Context**

- The Netherlands, 2000-2003, 9 referral centers
- CAP in adults, clinical & radiological, admitted

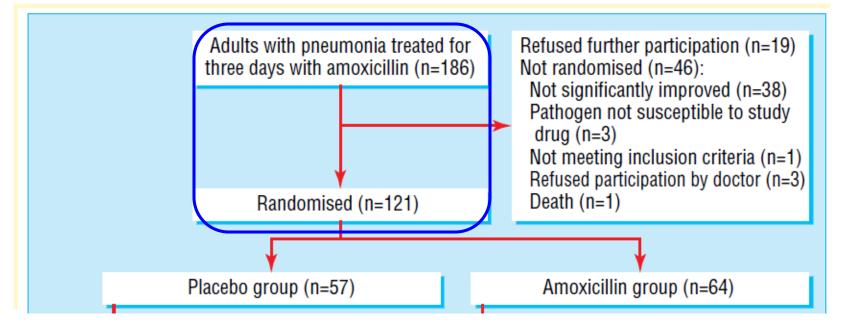
#### Intervention

- i.v. amoxicillin
- If patient well at day 3 (i.e. T < 38°C, oral switch feasible)</li>

Randomisation for D3-D8 => placebo or oral amoxicillin, 750 mg t.i.d.




#### **Primary criteria:**

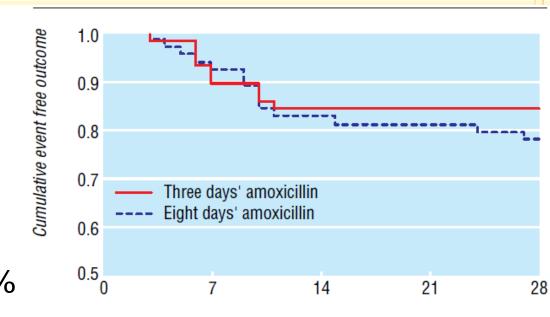

Clinical cure, day 10
No additional treatment

### Non-inferiority proven

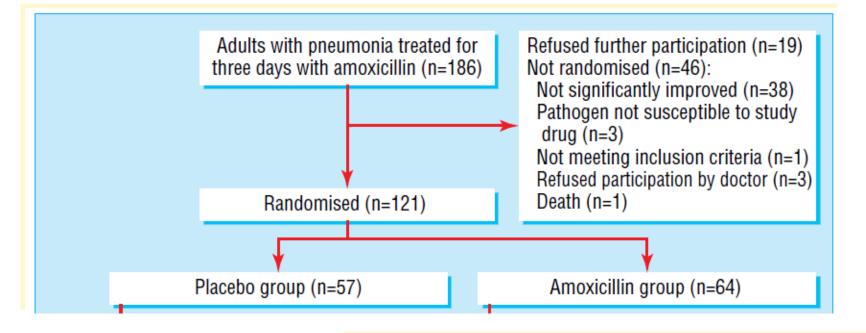
Upper 95% CI margin <10%



Days since start of treatment

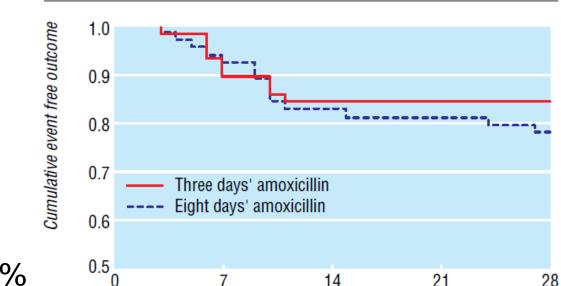



#### **Primary criteria:**


Clinical cure, day 10
No additional treatment

Non-inferiority proven

Upper 95% CI margin <10%




Days since start of treatment



#### **Primary criteria:**

Clinical cure, day 10
No additional treatment



#### Non-inferiority proven

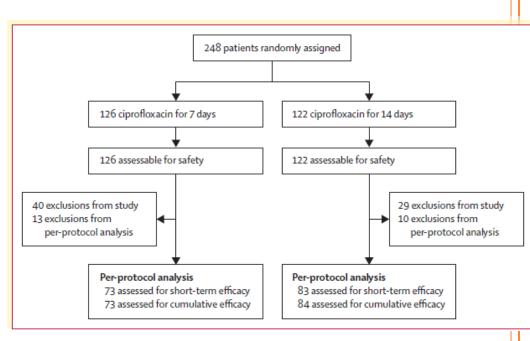
Upper 95% CI margin <10%

=> when a CAP looks fine at D3, stop ATB?

Days since start of treatment

Ciprofloxacin for 7 days versus 14 days in women with acute pyelonephritis: a randomised, open-label and double-blind, placebo-controlled, non-inferiority trial

Torsten Sandberg, Gunilla Skoog, Anna Bornefalk Hermansson, Gunnar Kahlmeter, Nils Kuylenstierna, Anders Lannergård, Gisela Otto, Bo Settergren, Gunilla Stridh Ekman


### Study population

- Sweden, 21 hosp. (2006-2008)Non-pregnant women
- Outpatient or inpatient

#### Intervention

- Ciprofloxacin 500 mg b.i.d., D1-D7
- D8-D15, ciprofloxacin ou placebo

Primary criteria
 clinical + microbiological cure, 10-14 d post-cipro



Sandberg T et al. Lancet 2011

|                                                    | Ciprofloxacin for 7 days (n=73) | Ciprofloxacin for 14 days (n=83) |
|----------------------------------------------------|---------------------------------|----------------------------------|
| Age (years)                                        | 46 (27–62)                      | 41 (23–58)                       |
| Recurrent urinary tract infections                 | 11 (15%)                        | 10 (12%)                         |
| Complicated urinary tract infections               | 4 (5%)                          | 10 (12%)                         |
| Diabetes mellitus                                  | 2 (3%)                          | 7 (8%)                           |
| Temperature (°C)                                   | 39.2 (38.7–39.7)                | 39.0 (38.5–39.6)                 |
| Flank pain or costovertebral angle tenderness      | 69 (95%)                        | 79 (95%)                         |
| Serum CRP concentrations (mg/L)                    | 100 (56–199)                    | 125 (68–227)                     |
| Pyuria                                             | 70 (96%)                        | 78 (94%)                         |
| Bacteria isolated from pretreatment urine cultures |                                 |                                  |
| Escherichia coli                                   | 64 (88%)                        | 79 (95%)                         |
| Staphylococcus saprophyticus                       | 3 (4%)                          | 1 (1%)                           |
| Klebsiella pneumoniae                              | 3 (4%)                          | 0                                |
| Others                                             | 3 (4%)                          | 3 (4%)                           |
| Positive blood culture                             | 16 (22%)                        | 26 (32%)*                        |
| Initial intravenous dose(s) of ciprofloxacin       | 14 (19%)                        | 11 (13%)                         |

Data are number (%) or median (IQR). All blood cultures grew Escherichia coli. \*Blood cultures missing for one patient.

#### Sandberg T et al. Lancet 2011



# Ciprofloxacin for 7 days versus 14 days in women with acute pyelonephritis: a randomised, open-label and double-blind, placebo-controlled, non-inferiority trial

Torsten Sandberg, Gunilla Skoog, Anna Bornefalk Hermansson, Gunnar Kahlmeter, Nils Kuylenstierna, Anders Lannergård, Gisela Otto, Bo Settergren, Gunilla Stridh Ekman

| Ciprofloxacin<br>for 7 days | Ciprofloxacin<br>for 14 days               | Difference<br>(90% CI)                                                    | Non-inferiority<br>test p value                                                                                |
|-----------------------------|--------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 73                          | 83                                         |                                                                           |                                                                                                                |
| 71 (97%)                    | 80 (96%)                                   | -0.9%<br>(-6.5 to 4.8)                                                    | 0.004                                                                                                          |
| 2 (3%)                      | 3 (4%)                                     |                                                                           |                                                                                                                |
| 73                          | 84                                         |                                                                           |                                                                                                                |
| 58 (93%)                    | 78 (93%)                                   | -0·3%<br>(-7·4 to 7·2)                                                    | 0.015                                                                                                          |
| 5 (7%)                      | 6 (7%)                                     |                                                                           |                                                                                                                |
| 7                           | 73<br>71 (97%)<br>2 (3%)<br>73<br>68 (93%) | 73 83<br>71 (97%) 80 (96%)<br>2 (3%) 3 (4%)<br>73 84<br>78 (93%) 78 (93%) | 73 83<br>71 (97%) 80 (96%) -0.9%<br>(-6.5 to 4.8)<br>2 (3%) 3 (4%)<br>73 84<br>78 (93%) -0.3%<br>(-7.4 to 7.2) |

Table 3: Clinical outcomes in the per-protocol population

#### ORIGINAL ARTICLE

## Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

R.G. Sawyer, J.A. Claridge, A.B. Nathens, O.D. Rotstein, T.M. Duane, H.L. Evans,

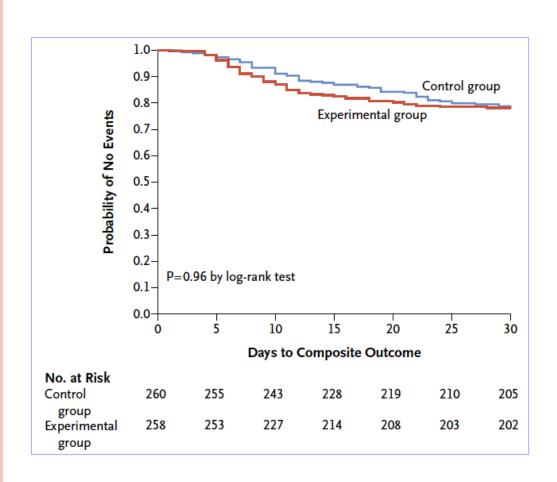
#### Randomized, multicenter, open-label

- Complicated intra-abdominal infections
  - + adequate source control
- Control = ATB until 2 days without fever, leucocytosis, ileus (max 10 d)
- Experimental = fixed duration of ATB, 4 days + 1
- Primary outcome (composite) = SSI, recurrence, or death

#### ORIGINAL ARTICLE

## Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

R.G. Sawyer, J.A. Claridge, A.B. Nathens, O.D. Rotstein, T.M. Duane, H.L. Evans,


#### **Median duration ATB**

- 4 days (IQR 4-5)
- 8 days (IQR 5-10)

#### ORIGINAL ARTICLE

## Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

R.G. Sawyer, J.A. Claridge, A.B. Nathens, O.D. Rotstein, T.M. Duane, H.L. Evans,



#### **Median duration ATB**

- 4 days (IQR 4-5)
- 8 days (IQR 5-10)

Table 1. Estimated Annual Cost Savings in the United States with a Fixed, 4-Day Treatment for Abdominal Sepsis.

|                         | Patients Who<br>Received the | Antibiotic-<br>Days |               |
|-------------------------|------------------------------|---------------------|---------------|
| Antibiotic              | Antibiotic                   | Saved*              | Cost Savings† |
|                         | percent                      | days                | 2015 U.S. \$  |
| Piperacillin–tazobactam | 55                           | 660,000             | 55,367,400    |
| Metronidazole           | 31                           | 372,000             | 1,257,360     |
| Ciprofloxacin           | 27                           | 324,000             | 1,046,520     |
| Vancomycin              | 25                           | 300,000             | 7,200,000     |
| Fluconazole             | 15                           | 180,000             | 1,440,000     |
| Ertapenem               | 10                           | 120,000             | 30,720,000    |

<sup>\*</sup> This value is the percentage of patients who received the antibiotic multiplied by 300,000 patients and then multiplied by 4 days.

<sup>†</sup> Cost savings were calculated as daily charges at Walgreens on April 29,

#### Case #1

#### 5 year-old boy

- Acute diarrhea, 3 days ago, 5 unformed stools/day
- ✓ Moderate fever (38°C)
- Well tolerated, although vomitted twice yesterday
- ✓ Little brother, and older sister, although w/acute diarrhea
- ✓ PE: vital signs OK, no dehydration

### 1. What would you advice?

- a. ORS with instructions
- b. anti-diarrheal drugs (loperamide)
- c. admission
- d. antibiotics
- e. stools exam

## м

### 1. What would you advice?

#### a. ORS with instructions

- b. anti-diarrheal drugs (loperamide) => may delay cure
- c. Admission => no reason
- d. Antibiotics => no dysentery, no suspicion of cholera
- e. stools exam => very low yield (<5%), no impact

### 2. What is the most likely diagnosis?

- a. Viral diarrhea
- b. Shigellosis
- c. Salmonellosis
- d. Clostridium difficile
- e. Giardiasis

### v

### 2. What is the most likely diagnosis?

#### a. Viral diarrhea => gastroenteritis

- b. Shigellosis => typically with blood & pain
- c. Salmonellosis => less likely to affect siblings simult.
- d. Clostridium difficile => no recent ATB uptake
- e. Giardiasis => chronic diarrhea

### Case #1 (continued)

Her mother came back with the boy 3 days later

- ✓ Diarrhea still active
- ✓ Now with blood in stools, & abdominal pain
- Little brother, and older sister, no symptoms anymore
- ✓ PE: still vital signs OK, no dehydration (ORS), fever 38.5°C

### 1. What would you advice?

- a. ORS with instructions
- b. anti-diarrheal drugs (loperamide)
- c. admission
- d. antibiotics
- e. stools exam

### 1. What would you advice?

- a. ORS with correct instructions
- b. anti-diarrheal drugs (loperamide)
- c. admission
- d. Antibiotics => ciprofloxacin, 3 days
- e. stools exam (for surveillance purposes)

## What is the yield of stool examination for acute diarrhea in the best labs in 2015?

a. <5%

**b.** 10%

c. 15%

d. 20%

e. 25%

## What is the yield of stool examination for acute diarrhea in the best labs in 2015?

- a. <5%
- b. 10%
- c. 15%
- d. 20%
- e. 25%

## What is the yield of stool examination for acute diarrhea in the best labs in 2015?

Table 7. Clinical characteristics of patients from whose stool selected bacterial pathogens were recovered at 10 hospitals in the United States (n = 30,463 specimens).

|                      | Stool specimens, % |                  | Patients, %     |                           |       |                      |
|----------------------|--------------------|------------------|-----------------|---------------------------|-------|----------------------|
| Pathogen isolated    | Total              | Visible<br>blood | Occult<br>blood | History of blood in stool | Fever | Abdominal tenderness |
| Camplyobacter jejuni | 2.3                | 8                | 52              | 37                        | 59    | 45                   |
| Salmonella           | 1.8                | 5                | 43              | 34                        | 72    | 29                   |
| Shigella             | 1.1                | 15               | 59              | 51                        | 79    | 34                   |
| STEC O157            | 0.4                | 63 <sup>a</sup>  | 83              | 91                        | 35    | 72                   |
| Total                | 5.6                | 3                |                 | 22                        |       |                      |

## What does it change if I prescribe the right ATB, in case his diarrhea is related to?

- a. Shigella sp.
- b. Salmonella sp.
- c. Clostridium difficile
- d. Shiga-like toxin producing *E. coli* (STEC)
- e. Campylobacter sp.
- f. Vibrio cholerae

## What does it change if I prescribe the right ATB, in case his diarrhea is related to?

- a. Shigella sp.
- b. Salmonella sp.
- c. Clostridium difficile

#### **Good effects:**

- Alleviate symptoms
  - Shorten duration

=>

- Decrease transmission
- d. Shiga-like toxin producing *E. coli* (STEC)
- e. Campylobacter sp.
- f. Vibrio cholerae

## What does it change if I prescribe the right ATB, in case his diarrhea is related to?

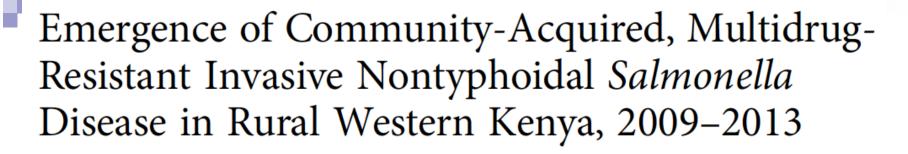
- a. Shigella sp.
- b. Salmonella sp.
- c. Clostridium difficile

#### **Potentially bad:**

- Chronic carriage (salmonella)
  - Risk of HUS (STEC)

=>

- Avoid as much as possible
- d. Shiga-like toxin producing *E. coli* (STEC)
- e. Campylobacter sp.
- f. Vibrio cholerae


#### What is the first-line antibiotic, in 2015, for ?

- a. Shigella sp.
- b. Salmonella sp.
- c. Clostridium difficile
- d. Shiga-like toxin producing *E. coli* (STEC)
- e. Campylobacter sp.
- f. Vibrio cholerae

#### What is the first-line antibiotic, in 2015, for ?

- a. Shigella sp. => fluoroquinolones
- b. Salmonella sp. => fluoroquinolones (to be monitored)
- c. Clostridium difficile => stop the causal ATB
- d. Shiga-like toxin producing *E. coli* (STEC) => azithro
- e. Campylobacter sp. => macrolide
- f. Vibrio cholerae => macrolide or doxycyclin

| Diarrheal Disease                      | Treatment in Children                                                                                                                             | Treatment in Adults                                                                                                                                                                                                     |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shigellosis                            | Azithromycin, 10 mg/kg/day in once-<br>daily dose for 3 days; or ceftriaxone,<br>50 mg/kg/day given once a day for<br>3 days                      | Ciprofloxacin, 750 mg once a day for 3 days; or azithromycin, 500 mg once a day for 3 days                                                                                                                              |
| Nontyphoid salmonellosis               | None or ceftriaxone, 100 mg/kg/day<br>in two equally divided daily doses<br>for 7–10 days; or azithromycin,<br>20 mg/kg/day once a day for 7 days | None or levofloxacin, 500 mg (or other fluoroquinolone) once a day for 7–10 days; or azithromycin, 500 mg once a day for 7 days; levofloxacin or azithromycin should be given to immunocompromised patients for 14 days |
| Enteric, fever including typhoid fever | Ceftriaxone, 100 mg/kg/day in two<br>equally divided daily doses; or<br>azithromycin, 20 mg/kg/day once<br>a day for 7 days                       | Levofloxacin, 500 mg (or other fluoro-<br>quinolone) once a day for 7 days;<br>or azithromycin, 500 mg once a<br>day for 7 days                                                                                         |
| Campylobacter jejuni diarrhea          | Azithromycin, 10 mg/kg/day in a once-<br>daily dose for 3–5 days; or erythro-<br>mycin, 30 mg/kg/day in 2–4 divided<br>doses for 3–5 days         | Azithromycin, 500 mg once a day for 3 days; or erythromycin, 500 mg four times a day for 3 days                                                                                                                         |
| Aeromonas species diarrhea             | Treat as shigellosis                                                                                                                              | Treat as shigellosis                                                                                                                                                                                                    |
| Plesiomonas shigelloides diarrhea      | Treat as shigellosis                                                                                                                              | Treat as shigellosis                                                                                                                                                                                                    |
| Cholera (due to Vibrio cholerae 01)    | Erythromycin, 30 mg/kg/day given<br>thrice daily for 3 days; or azithromy-<br>cin, 10 mg/kg/day in a once-daily<br>dose for 3 days                | Doxycycline, 300 mg in a single dose;<br>or tetracycline, 500 mg four times<br>a day for 3 days; or macrolide<br>(erythromycin, 250 mg thrice daily;                                                                    |
| HL Dupont. N Engl J Med 20             | 009                                                                                                                                               | or azithromycin, 500 mg once a<br>day) for 3 days                                                                                                                                                                       |



Martina Oneko,<sup>1</sup> Simon Kariuki,<sup>1</sup> Vincent Muturi-Kioi,<sup>1</sup> Kephas Otieno,<sup>1</sup> Vincent O. Otieno,<sup>1</sup> John M. Williamson,<sup>2</sup> Jason Folster,<sup>2</sup> Michele B. Parsons,<sup>2</sup> Laurence Slutsker,<sup>2</sup> Barbara E. Mahon,<sup>2</sup> and Mary J. Hamel<sup>2</sup>

Table 2. Antibiotic Resistance Pattern in Blood Cultures From Participants of Malaria Vaccine Trials in Western Kenya

|                           | Resistant/Tested, No. (%)             |                          |  |
|---------------------------|---------------------------------------|--------------------------|--|
| Antibiotic                | Salmonella B<br>(n = 72) <sup>a</sup> | Salmonella D<br>(n = 30) |  |
| Ampicillin                | 64/68 (94.1)                          | 27/30 (90)               |  |
| Chloramphenicol           | 54/72 (75)                            | 28/30 (93.3)             |  |
| Amoxicillin + clavulanate | 44/67 (65.7)                          | 13/27 (48.1)             |  |
| Ceftriaxone               | 17/72 (23.6)                          | 0/30 (0)                 |  |
| Ciprofloxacin             | 1/71 (1.4%)                           | 0/30 (0)                 |  |
| Imipenem                  | 0/42 (0)                              | 0/15 (0)                 |  |

Oneko M & al. Clin Infect Dis 2015

#### Original Article

### Prevalence and antibiotic resistance of bacterial pathogens isolated from childhood diarrhoea in four provinces of Kenya

Willie Kipkemboi Sang<sup>1</sup>, Valerie Oundo<sup>2</sup>, David Schnabel<sup>2</sup>

<sup>1</sup>Center for Microbiology Research Laboratory, Kenya Medical Research Institute, 54840-00200, Nairobi, Kenya <sup>2</sup>Enterics laboratory, US Army Research Unit, 606-0621, Nairobi, Kenya

Sang WK & al. J Infect Dec Ctries 2012

## Phenotypic and genetic characterization of *vibrio cholerae* O1 isolated from various regions of Kenya between 2007 and 2010

Njeru Mercy<sup>1</sup>, Ahmed Abade Mohamed<sup>2,&</sup>, Ng'ang'a Zipporah<sup>3</sup>, Goutam Chowdhury<sup>4</sup>, Gururaja Perumal Pazhani<sup>4</sup>, Thandavarayan Ramamurthy<sup>4</sup>, Hamadi I Boga<sup>3</sup>, Samuel M Kariuki<sup>5</sup>, Oundo Joseph<sup>6</sup>

Mercy N & al. Pan African Med J 2014

### **Last question**

✓ The boy improves dramatically with cipro, 3 days

- Stools culture (performed in a lab you don't know):
  - ✓ Predominance of E. coli
    - Resistant to ciprofloxacin & trimethoprim/sulfa
    - susceptible to ceftriaxone and imipenem
  - ✓ S. aureus
  - ✓ C. albicans

#### => What do you do?

#### **Conclusions**

Diarrhea is a common disease, most will resolve with no
 ATB

- ✓ Benefit of antibiotics to be balanced against the risks
  - Emergence of resistance may jeopardize future ATB treatment
  - Gastro-intestinal side effects

#### => Restrict ATB use to

- Grossly bloody diarrhea
- ✓ Cholera-like syndrom
- Currently, stools culture of limited interest for an

